Shape optimisation with multiresolution subdivision surfaces and immersed finite elements
نویسندگان
چکیده
We develop a new optimisation technique that combines multiresolution subdivision surfaces for boundary description with immersed finite elements for the discretisation of the primal and adjoint problems of optimisation. Similar to wavelets multiresolution surfaces represent the domain boundary using a coarse control mesh and a sequence of detail vectors. Based on the multiresolution decomposition efficient and fast algorithms are available for reconstructing control meshes of varying fineness. During shape optimisation the vertex coordinates of control meshes are updated using the computed shape gradient information. By virtue of the multiresolution editing semantics, updating the coarse control mesh vertex coordinates leads to large-scale geometry changes and, conversely, updating the fine control mesh coordinates leads to small-scale geometry changes. In our computations we start by optimising the coarsest control mesh and refine it each time the cost function reaches a minimum. This approach effectively prevents the appearance of non-physical boundary geometry oscillations and control mesh pathologies, like inverted elements. Independent of the fineness of the control mesh used for optimisation, on the immersed finite element grid the domain boundary is always represented with a relatively fine control mesh of fixed resolution. With the immersed finite element method there is no need to maintain an analysis suitable domain mesh. In some of the presented twoand three-dimensional elasticity examples the topology derivative is used for creating new holes inside the domain.
منابع مشابه
Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces
We introduce the isogeometric shape optimisation of thin shell structures using subdivision surfaces. Both triangular Loop and quadrilateral Catmull-Clark subdivision schemes are considered for geometry modelling and finite element analysis. A gradientbased shape optimisation technique is implemented to minimise compliance, i.e. to maximise stiffness. Different control meshes describing the sam...
متن کاملTechnische Universität Graz Boundary element based multiresolution shape optimisation in electrostatics
We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary...
متن کاملREVERSE LOOP SUBDIVISION FOR GEOMETRY AND TEXTURES
Reverse subdivision aims at constructing a coarser representation of an object given by a fine polygon mesh. In this paper, we first derive a mask for reverse Loop subdivision that can be applied to both regular and extraordinary vertices. The mask is parameterized, and thus can also be used in reversing variants of Loop subdivision, such as those proposed by Warren and Litke. We apply this mas...
متن کاملProcedural Shape Synthesis on Subdivision Surfaces
We present methods for synthesizing 3D shape features on subdivision surfaces using multiscale procedural techniques. Multiscale synthesis is a powerful approach for creating surfaces with different levels of detail. Our methods can also blend multiple example multiresolution surfaces, including procedurally-defined surfaces as well as captured models.
متن کاملDiagrammatic Tools for Generating Biorthogonal Multiresolutions
In a previous work [1] we introduced a construction designed to produce biorthogonal multiresolutions from given subdivisions. This construction was formulated in matrix terms, which is appropriate for curves and tensor-product surfaces. For mesh surfaces of non-tensor connectivity, however, matrix notation is inconvenient. This work introduces diagrams and diagram interactions to replace matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.02719 شماره
صفحات -
تاریخ انتشار 2015